%’ d\/“B , Corr‘espona’ence Round
. table Arabic/Farsi OCR

CONTENTS

TEXTS AND MANUSCRIPTS: DESCRIPTION AND RESEARCH

L. Menshikov. A Fragment of an Unknown Leishu from Tunhuang
T. Sultanov. The Structure of Islamic History Book (The Method of Analysis) .

TO THE HISTORY OF ORIENTAL TEXTOLOGY.

K. Kepping. The Official Name of the Tangut Empire as Reflected in the Native Tangut Texts .

PRESENTING THE COLLECTIONS.

T. Pang. Rarc Manchu Manuscripts from the Collection of the St. Petersburg Branch of the Institute of
Oricntal Studies, Russian Academy of Sciences

ORIENTAL MANUSCRIPTS AND NEW INFORMATION TECHNOLOGIES
Correspondence Round table: Arabic/Farsi OCR .

A. Matveev. Sakhr Bilingual OCR (Al-Qari’ al-Ali). A User's Initial Impressions .

J. Bell & P. Zemanek. Test of Two Arabic OCR Programs
P. Roochnik. Itisalat OCR Discussion

PRESENTING THE MANUSCRIPT

0. Akimushkin. Afuragqa’. Album of the Indian and Persian Miniatures of the 16—18th Centuries and the
Models of the Persian Calligraphy of the Same Period

BOOK AND SOFTWARE REVIEW

22

22

33

33

47

48
55
58

63

63

68

Color plates: Muraqqga‘. Album of the Indian and Persian Miniatures of the 16—18th Centuries
and the Models of the Persian Calligraphy of the Same Period (see p. 63—67).

Front cover:
Fol. 17a. Portrait of a Man by Rida-yi ‘Abbasi, 11.8 X8.2 ¢m,

Back cover:

Plate 1. Fol. 16a. Portrait of Timur Khan Turkmén by Sadigi beg Afshar, 19.3 X 11.6 cm.

Plate 2. Fol. 36a. The Darvishes Picnic in the Mountains. Probably Isfahan school, 25.5 % 14.5 cm.
Plate 3. Fol. 6a. The Shaykh and the Harlot by Muhammad Yiisuf Musavvir, 18.2 X11.3 cm.
Plate 4. Fol. 1a. Portrait of Mirza Jalala by ‘Alf Quli beg Jabbadar, 16.0 X 9.1 cm.

RUSSIAN ACADEMY OF SCIENCES
THE INSTITUTE OF ORIENTAL STUDIES
ST. PETERSBURG BRANCH

YNanuscripta vientalia

Jnternational _Journal for (Iriental YNanuscript Pesearch

Vol. 1 No. 3 December 1995

THESA
ST. PETERSBURG—HEILSINKI

A. Matveev

SAKHR BILINGUAL OCR (AL-QARI’ AL-ALI).
A USER'S INITIAL IMPRESSIONS

In this paper I would like to record some initial impres-
sions from working with the Sakhr bilingual OCR system
known as Al-Qari’ al-Ali, to comment certain specific
features of the program and to suggest a number of ways in
which it may be improved.

It is perhaps appropriate to start with a few remarks on
the origin of the product. It was first mentioned in 1990,
when Dr. Efim Rezvan of the St. Petersburg Branch of the
Oriental Institute of the Russian Academy of Sciences pro-
posed the development of such a program in his report
“Computer Methods in Qur’anic Studies™ presented at the
2nd Conference and Exhibition on Bilingual Computing in
Arabic and English in Cambridge. Originally the program
was conceived as a powerful tool to facilitate the prepara-
tion of critical editions of Arabic sources by means of
transferring large amounts of printed Arabic texts to com-
puter files for subsequent processing. The immediate ob-
jective was the preparation by Valeriy V. Polosin of a criti-
cal edition of the famous “Fihrist™ by Ibn al-Nadim. Dr.
Rezvan considered this to be an excellent opportunity to
develop and apply new techniques and software, and man-
aged to interest a group of talented young programmers
who had worked in the former Soviet high-tech military
industry in the project. For a year Alexander Staryh. Mik-
hail Beregov, Alexander Popov and Fedor Bikov, in col-
laboration with Efim Rezvan. devoted nearly all their free

time to the development of the DOS prototype of the pro-
gram, which was given the name MULTREC (Multi-
Lingual Text Recognizer). The program was demonstrated
in 1993 at the 3rd International Conference and Exhibition
on Multi-lingual Computing held at Durham, where it
aroused considerable interest, since it was virtually the
only working program of its type. At this time the software
company al-Alamiah became interested in the program,
and subsequent to a visit to St. Petersburg by al-Alamiah's
General Manager Dr. Ashraf Zaki, the preparation of a
new Arabized version of the program was planned. The
new version combined the achievements of the Russian
programmers with important contributions made by spe-
cialists at al-Alamiah.

The first commercial version of Al-Qari’ al-Ali was
marketed in 1994. This product, although quite useful, has
not yet become wide-spread, on the one hand because of its
recent appearance and on the other because of its relatively
high price and the powerful hardware it rcquires (a Pen-
tium processor and a scanner with 600 dpi resolution are
recommended). Hoping to introduce the product to my
colleagues in Arabic studies who may not have had the op-
portunity to use it yet, I would like to report briefly on
some characteristics of the program and how it may be
applied.

Characteristics and area of use

Al-Qari’ al-Ali works under the operating system “An-
Nawafidh al-'Arabiya” 4.01 (or later). which, in turn. is
installed over a Windows 3.1 operating system. It allows
the transfer of scanned images of printed Arabic materials
into text format, yielding 8-bit encoded text files which can
be processed with al-Alamiah's word processor “al-Ustadh™
or, for example, with the Arabic version of Microsoft Word
for Windows 6.0. The program can be used for recognizing
any Arabic printed matter. But if the text contains numer-
ous ligatures, which is characteristic of older printed
texts [1], errors at “Recognition” are practically inevitable,
so the user has to correct them later during “Spell Check-
ing”. The best results are obtained from well printed mod-

ern texts with a minimum of ligatures. It is possible to
transfer rather quickly a modern book or magazine into
computer text with few errors (no more than 1%). As for
poorly printed older books with a great many ligatures not
included on the training keyboard and a variety forms for a
given character, the process of recognition is regularly ac-
companied by crrors. With such materials the production
of a computer text file is extremely time consuming be-
cause of the need for careful correction of the recognized
text (at first with the help of the built-in spell checker, and
then by checking the corrected text in Word 6.0 or some
other word processor). Even so. the production of an Ara-
bic text is much faster than by typing, though it rcquires a

3

A. MATVEEV. Sakhr Bilingual OCR (41-Qari’ Al-Ali). A User's Initial Impressions 49

more highly qualified user. The use of such a program is at
any rate practically the only way for the majority of Furo-
pean Arabists to computerize a large amount of Arabic
printed matter. For the majority of Eastern European
scholars, moreover, the services of professional Arabic
typists are beyond reach, and the percentage of errors in
typed text is rather high as well. It should be noted, how-
ever, that the advantage in speed becomes significant only
when transferring rather considerable amounts of text (not
less than ten or twenty pages), because preparing the pro-

Hardware

Anyone who has dealt with Arabic PC software knows
how complex and slow these programs tend to be, espe-
cially in comparison with similar Latin programs. Al-Qari’
al-Ali is no exception to this rule [4].

The program requires at least 386 processor with 4 Mb
RAM and 10 Mb available disk space, but a more powerful
hardware configuration is very welcome. Working with a
Pentium 90 with 16 Mb RAM produces quitc acceptable
results. On a 486 DX2/66 with 12 Mb RAM the processing
of scanned images of Arabic text was less successful. The
teaching of a font and the further recognition of scanned
text were not very difficult for the smaller computer. al-
though the processor could not provide permanent support
for the keyboard layout display on the screen and restored
it after each operation. But the subscquent spell checking
takes far too much time. Going from one error to the next
takes up to half a minute, and if the font requires further
teaching, which is practically inevitable even for rather

gram to work, that is, “teaching™ a new font, is a laborious
process with fonts of any complexity.

The program is particularly important for the
urgent task of compiling databases of medieval and
modern Arabic texts, such as the database being deve-
loped at the University of Bergen under the direction of
Prof. Joseph N. Bell. where I had the opportunity to work
with Al-Qari’ al-Ali [2]. Another particularly promising
databasc project was begun in November 1994 in Saudi
Arabia [3].

requirements

carefully taught fonts, the total correction process for one
word can take several minutes. Thus the use of a Pentium
with 16 Mb RAM is to be recommended when working
with the program.

However. I would like to emphasize that a powerful
processor is required not primarily for recognition of the
text, but first of all for the spell checking, which is most
important when working with poorly printed materials and
complex fonts. In the case of modern books or typewritten
texts, a weaker configuration (486 or even 386 with 4—8
Mb RAM) can be used.

The scanning resolution recommended by the manual
is 300 dpi. However, it seems that the scanning of rather
complex fonts of small size with this resolution can cause
too many errors during the recognition process. In such
cases. if the hardware configuration allows normal work
with a higher resolution, this would be preferable. I
achieved acceptable results scanning with 600 dpi.

Some remarks on the work with the program

Al-Qari’ al-Ali comes with a standard set of modern
computer fonts, which the program can recognize auto-
matically. If the font of the scanned text is not included in
this set, the program, after a search which may take some
minutes, reports that no built-in font coincides with the
scanned one. In such a case one must teach the program
the new font. For this purpose it is generally sufficient to
process in “learning™ mode at Icast one and one-half to two
pages of text, after which almost all letters, ligatures, and
other symbols of the font will have been taught. After-
wards, it is useful to process onc or two additional pages in
a separate recognition mode within the learning option.

Learning option

In the learning mode each character or ligature of the
scanned text is distinguished by the program. and the uscr
must choose its alphabetic equivalent from the four-page
keyboard layout on the screen (lctters arc on the first page.
figures and other special characters on the second. liga-
tures on the third and fourth). At first one must do this for
every character. Eventually the program will offer its own
choices, which one can accept. if correct. or replace.

In the special recognition mode within the lcarning
option, the program, having alrcady been taught most of
the characters, automatically recognizes them. stopping
only on the symbols which it can not recognize. The user
can then sct the alphabetic cquivalent of the unknown
symbol himself (as in the learning mode). This option

4 Manuscripta Orientalia

makes it possible to process a page quickly and to teach the
program most of the remaining symbols. One should not
pass to this mode too early, however, because during
“recognition” the program may make mistakes which it
will not be possible to discover automatically. The most
usual crrors are connected with diacritics, the first and
main parameter analyzed by the program being the
“shape™ of the letter or ligature. Thus, for example, if the
program has been “taught”™ medial “ba’” but not medial
“nun”, “ya " and other similar characters, it will consider
every “onc-tooth™ letter as “ba’”. The same applies to such
pairs as 'r" — "z", “d” — “dh”, and "t — ~2”. This pro-
blem is particularly troublesome with ligatures. If, for ex-
ample, the user has taught the program the medial ligature
“nb”. he must theoretically teach it another thirty-five
similar ligatures, that is. all thirty-six two-letter combina-
tions of the six “one-tooth™ letters “b”, “t”, “th”, “n”, “y"
and “hamza”. Otherwise errors such as kunba for kunya
will occur regularly throughout recognition. But the num-
ber of non-standard ligatures onc may teach the program is
limited to about 130, which is often insufficient for a
complex font. Therefore. the user should consider very
carcfully whether it is necessary to teach a given ligature or
not. The criterion, naturally, is the existence and frequency
of similar ligatures. For example, if one has taught the
ligature “bah™ “yah™, etc.. it will be expedient to add the
ligaturc " "ah™, though it is not a frequent one. If one has
taught a ligature and sacrificed its uncommon variants, er-
ror when these rare combinations occur will be inevitable.

50 YNanuscripta (Jrientalia. VOL. 1 NO.3 DECEMBER I

To avoid such errors the user must periodically go out
of recognition mode and return to learning in order to
check how correctly and completely he has taught the pro-
gram the font in question. If too many errors occur, it is
reasonable to remove some of the most “dangerous™ liga-
tures. Sometimes it is better to get a symbol for an unrec-
ognized character (“"") instead of the wrong letter or liga-
ture. It is easier to find this symbol after recognition is
complete and to correct it then. Spell checking could pass
over possible errors, because it is not rare in Arabic that a
change of a letter produces a new “correct” word. How-
ever, the teaching of the majority of such ligatures will
usually be finished during the following step of the work.
the recognition of the whole text.

Recognition option

Having taught the program the font. one can pass to
the next step. namely recognition of the text. After recog-
nition of a given page one should spell check the recog-
nized text. The parallel movement of the cursor, which
highlights a block of the text in two windows (Text and
Image) makes it possible to correct errors rather easily.
While correcting one should continue teaching the font.
since from the Spell Checking window it is possible to
switch to learning mode and teach incorrectly recognized
characters. Usually. such errors are caused by ligatures. so
at this step one will face the serious problem of selecting
ligatures to be removed. because the number of ligatures
that can be taught in one font is limited.

Spell checking (including the final stages of teaching
a font) takes from ten to fifteen minutes up to one and a
half hours per page initially. depending on the complexity
of the font. As one progresses in a text. this time is reduced
as the number of characters that must be taught decreascs.
However, for complex fonts the process of re-teaching
continues, practically as long as one is working with the
text.

When the user passes from the Spell Checking window
to the learning option. he can also correct crrors noticed in

the Text window (unfortunately in this version of the
gram it is impossible to pass directly from the Sj
Checking window to the Text window). Here it is necessary
to be very cautious. Firstly, the position of the cursor on the
screen after moving it in the Text window does not corre-
spond to its real position (the difference is some three or
four places), so in order to find out where the cursor really
is, it is necessary to perform some operation in the Text
window or simply to move the text in the window slightly.
Secondly, it is not a good idea to correct text below the last
place checked. because it could cause loss of connection
between the 7ext and /mage windows before the text is
fully corrected.

Once spell checking is completed, it is necessary
(using a special option) to detect unrecognized characters
(designated by the symbol “*) and to correct them.

The result is a quite readable text with rather few er-
rors. For a font of average complexity they will number
from ten to twenty per page. For simple modern fonts the
number will be very small (as in similar Latin OCR pro-
grams), but for complex fonts the amount of errors can be
rather considerable. Subsequent manual correction of the
text in Arabic Word 6.0 (or other word processor) is re-
commended in all cases.

Once the processing of a page is finished, it must be
added to the text file, which should be saved in the OCR
program as Arabic MS-DOS Code Page 720, and opened
as the same in Word 6.0. The most convenient way is to
use files with 7—10 pages, since the further processing of
larger files (more than ten pages) in Word will be quite
slow.

If one has to convert a rather short text (no more than
ten pages). it would be useful to reduce the time of teach-
ing the font and to correct inevitable errors by using the
spell checking application. In such a case it will be enough
to teach only one page and then to process another in the
recognition mode within the learning option. Thereafter
onc can turn to the recognition of the whole text with a
minimum teaching of the font during spell checking.

Recommendations for improvement of the program

Since the program will continually be improved. we
would like to point out some problems which we hope the
developers will take into consideration in future upgrades.

1. Switching From Spell Checking to Text Window

The most needed improvement would be to provide di-
rect switching from the Spell Checking window to the Text
window without closing the former (a similar function ex-
ists. for example. in Word 6.0). This is cspecially impor-
tant because of certain peculiaritics of the Arabic script. In
a great many old Arabic printed texts the spaces between
words are not indicated, and spaces often occur in the
middle of words, rather than between them. As a result, the
word could sometimes be cut in two. For cxample. the
word ’arsala could be cut in two. if the brecak between
“ra’" and “sin” is too large. Such an crror, although quite
typical. will never be found by the spell checker. since both
sall and *ara cxist in Arabic [5]. The sccond half of the in-
correctly divided word ’aw|[dahna will be discovered by
spell checking. since the word “d-h-n” docs not exist in
Arabic, but nevertheless onc will not be able to correct this
crror from the Spell Checking window. The user has to

delete the space between *aw and d-h-n, but for this pur-
posc it is necessary (1) to close the Spell Checking window,
(2) to pass to the Text window, and (3) to delete the space.
Afterwards the user has to start spell checking again, so
the operation will take considerable time. The fact that
many scanncd texts will contain a large number of such er-
rors is the main reason why easy and fast switching to the
Text window is desirable.

A second method to solve this problem would be to
provide “Delete Space Back™ and “Delete Space Forward”
options inside the Spell Checking window.

2. Zooming of the image

In the present version of the program, zooming of the
text image cnables the user to enlarge it (in the learning
modc and while spell checking), but does not allow him to
diminish it. However. if only a very small part of the image
is visible in the window. there is often a need to zoom the
text out [6]. So, it would be uscful to add to the zoom fea-
turc onc or two options less than 100%, including at least
onc as low as 75%.

MATVEEV. Sakhr Bilingual QCR (Al-Qari’ Al-Ali). A User's Initial Impressions 51

3. Learning option

a. When switching from learning mode to recognition
(and vice versa), it is necessary first to stop the learning
process, then switch to recognition mode, and then start
the learning process again (altogether 3 steps). This
switching operation takes a great deal of time, and in the
second stage of teaching a font it must be carried out quite
often. Direct switching from learning to recognition (and
back) by pressing a key would be a considerable improve-
ment.

b. A space symbol should be included in the keyboard
character set. Sometimes it is senseless to provide meaning
for a “symbol” distinguished by the program (for example,
if it is a printing error, non-text mark, just a paleographi-
cal or paper defect, etc.).

¢. A feature making it possible to “erase™ such unnec-
essary elements from the scanned image would also be
useful. An eraser is likewise necessary when adjusting the
frame before the recognition of text (especially when deal-
ing with poor quality printing, where the Arabic text frame
is accompanied by a “dust” cloud), because the options
“Selection of Text for Recognition™ and “Marking Zones to
Be Excluded from Recognition™ are sometimes too cum-
bersome.

4. Ligatures

a. The window listing optional ligatures gives them in
the order of creation rather than alphabetically. which in
most cases makes it more difficult to find the ligatures one
is looking for. Therefore, if possible, the ligature window
should include an optional alphabetical sorting button.

b. In the current version, after a ligature window is
opened and, then closed or removed. the cursor moves back
to the top of the ligature list. In order to continue work
with the ligatures, one has to place the cursor in the win-
dow of the ligature list and click it. Then one must start
looking through the ligature list from the very top (this is
especially important when the number of non-standard
ligatures has already been exceeded and one has to select
ligatures to be removed). It would be much more conven-
ient if the cursor returned to the former position in the
ligature list after closing or removing an opened ligature.

c. It would be helpful if the following standard liga-
tures, or at least some of them, were included in the third
and fourth pages of the keyboard layout display (a fifth
page would be a useful addition):

Dd+ .08 S NS LS rS+¢U:

p) I P L}5 S (three variants — o A:
)5 (5o s© (two variants);

3) “4/4: twelve variants (although the actual num-
ber of quite frequent ligatures is smaller) +4c (four vari-
ants); 4o (two variants); 4§ (two variants): <5 (two vari-
ants);

4)“. +a": P P" (two variants); s (two variants):
= (three variants); B, (two variants).

5) “al”: three variants;

6)“...+ c”: auw (SiX variants);, suo (SiX variants). as
(six variants); a.e (two variants):

T) b aner et i

8) The dialogue boxcs for some standard ligatures (for
example, “b-y”) offer only two standard positions (final
and isolated), but in some fonts other positions occur, so
these non-standard positions should be included as well. In
the current version of the program the only way to deal
with such positions is to create three-character non-
standard ligatures, such as “b-y-keshida™.

d. The fact that the program separates poorly the fol-
lowing ligatures should be considered:

1) “Consonant + alif” (for example, "na”, “fa”, etc.)

2) “Consonant + ra’” (for example, " I-r”, "m-r")

3) “Consonant + waw” (for example, “bua”, “fa")

4) “Consonant + sin” (for example, “yas™, “fas™)

5) “Consonant + "single-tooth" consonant™ (for
example, “kan”, "man”)

6) Two “single-tooth™ consonants (for example. “yab™).
This is probably a function of the peculiarities of the fonts,
on which I tried the program, but nevertheless it would be
useful if the separation of such frequent quasi-ligatures
were improved in the next version of the program.

e. It would be helpful to have two operating modes:

1) one mode with a minimum of non-standard liga-
tures, some fifty to seventy (for a simple modern font);

2) one mode with a maximum of non-standard liga-
tures, some 200 to 300, or more (for complex fonts).

The availability of two such operating modes would.
on the one hand. simplifv and accelerate using the program
with modern texts. On the other hand, it would also facili-
tate work with complex fonts. because the amount of per-
mitted non-standard ligatures (about 130) is not always
enough, cven for unvowelled texts. and it is obviously not suf-
ficient for work with fully vowelled texts such as poetry.

Of course. an indefinite number of allowed non-
standard ligatures would be welcome, since work with
complex multi-ligature fonts would become much easier.
though increasing the number of ligatures taught. if possi-
ble with the current algorithm, will slow the program down
correspondingly.

f. There are also some problems related to the recogni-
tion of separate consonants:

1) The program unsatisfactorily distinguishes a medial
“ha'". Despite the presence of a specific variant of this
glyph among the variants taught. the program often fails to
recognize it. When this happens. increasing the number of
variants taught provides little help.

2) The same problem occurs with “kaf™ and its liga-
tures ("LS™: " JS™: *S” and others). In the case of “kaf .
the problem is probably caused by the link of the “tail” of
the “kaf ™ with the previous letter, but in the case of “ha™
the reason is not clear. Perhaps this peculiarity of the pro-
gram should simply be accepted and the user should not
continue to teach these two letters if the program fails to
learn them.

¢. It would be useful to increase the number of variants
allowed for two letters: “alif” (isolated and final) and
“lam™ (initial and medial). At least twice the normally
permitted cleven variants arc required. since confusion of
these two letters is common in many fonts. In the current
version of the program one must select very carefully
which variants are to be kept or removed. a process which
is time-consuming, but still produces only meagre results.

N

I~

YPanuscripta (Jrientalia. VOL. 1 NO.3 DECEMBER 1995

s dleyeniple ,uul..ﬁ‘ €18 JUQ, c“/'d”“-’

[

Jlosea 005
u-)IJULJL..aI
14 A)‘_ﬂ.l, IS P
,UU_.TU.\.J(\ L
REI)
y)ur*’Y)J)- Y
d'(";- e
uu-xl..L;,.J__)
oLl glzyy
RS ARFRNE
o Ty s
c’J‘]u:““u‘)ﬁ
JnY { I"')-’f“
ﬁ 15V 3az.! fi.ﬁ

l.A ‘.Y¢,‘y|ur"“,
|JnJ. oo ,-.L
e-fa u"‘“‘ 1y
A_Pull)'IY)
<l .::'ﬁJc salak
r..:.kc, r.a,-;‘
b Joad palid
..ih\',\..'la.\)..ﬂ
il alain
sea_Jae gl
Je:l JA.h..J-H
‘l‘] d,..ng—l “
v:-‘-,eu-lbr:-‘-“
8 Yhaelepsil,
o gty v':—")
p P LA,\CUG
sasatlalos ot
llzgl,il.".n.l:i'.f,
J_ZL...L'.,ZL\.:n
O Dlep et
r‘,&.}!.\lsrnjlha‘
d'r,;u—tg,LJl
h;l:-._,-rig el
G-l a2,
R A

lieg ozl o dyepdiid g .‘s.u\r, aCs ,.u, LRy iate L./.r,m Q;, '
'“.J olje! QA .J'frn‘.\..\uv,.w uLlej,‘ J—Mdjl:\djd.t _..rlrh_,ﬁh
Lot Lall bl ot ™ oo b d IS FTRarH (.J)\)IJ---U} Jilea
s JpilUly Lps SRS ke gl larey 17 LI S350y
adL-m‘(v)..ﬂ .\;h..‘llr - ;G {-.J(‘ .\,frg.xh ff")'I,J- QYJK.—W
g.v)‘ X‘a,,\..lb\.‘sq elyk gl .rl' ol L ()nnm g ‘u)(‘ ‘rr‘; -
WYLt]'llrlyksbﬂr\) (J)_)| J”'“’“rf‘ 3% -.rhlng J;J{M.Lu.f
ULGW;!J%J. byl JB iy Sl lae i o pSiialy)\ .,r,vd, 5
J-ni‘-.\...,l()i..”. le J)-)'. #5154 c,)h)'—lsrnj.f,lsa.p \.u, « ..|| (.L ,J-‘ .W
o (ohth) G Sy ¥ m
.A.fllJ.L,. AN S5 e ._,l_flL_.-La....L_;Jh;.)Hp.J;(LJ I).,.,
Sav pagrade s ELe i cyale Gl Joad las) 500,558 O LY, £y
JL.:M\fLrN_.,IL leaggny - .AYI). > a8, r;ﬂ‘pc)l‘s_ M5
Jdeplayly “K”E!J"LJ)J-‘L& ‘.H‘S-;uhf ‘j,‘u.&]‘.’/u\‘)_)\’ra-))- ‘yb/b
Ol S G0 ki Sy Jlo st Y0, e on 319 51, epdd i dye flpnalabil)
358 JJ)mlds)jJ..»-tll Jl3 ¥l ae ,Lruc.,l,-x h.: gl .n,..lu,h
-\-’yb--”_sd-b.«Eu),.y@-‘,_n” ENSw ams‘,J)a.sl-_»lz) el
r(lnl)su I)J-)u‘rd‘,.-;_,).‘. s Joley L) sl 54, Pt 4 Y.\-;LJI
‘),‘g)”dJn L)-j,s,r ,.c~K—),rA‘. Ld! "..‘ i -t }.Y cu\(. n‘)JJ gJ“
e4. \JL-J HHV) (\-,) £ Lu)l,-ulc,;b/ S)JJM‘,.‘_.I',C}‘)' c)l.-l)b u\.ﬁl
R Iy 25 s Jeylindll falo Oy o i e A S
i e ¥ i ,,J.cy\.!(l. ity) u'd“muﬁ_r Wife gm s gt umw.\.n
ﬂug‘,i ialyaf u.vl\ (f“s 15_) l.aa“)\.’\.l\;-\ er;,_,:wr- ‘rr)SJ"J
.L..,t,‘_.x\h.,l Ealbgi 6_.6‘.,,&,'\)\,.‘.%_ G- il il ae
P ..,L.,r,‘_,w&...y\f Lef! ol Clb st bl 2L gLeadyiSny oLl
u,ﬂ‘ -»’J.s A58, JL-IJ,!.)\LJ)LJU’TY_,SA-JA-,“FJb}t‘")ﬁ_,lu\:e(l-LLl
) h yld) OJ)Y Aa. y'--\h._;_)\.nU)-”, «‘),J QJﬁL(siLLp[de-!‘JL
6-.p;J), Jh gv,,,_;lf_ 0,35 oS anlt e fblaf ge S Qlial, At
Jebyi, L&).“.\ ﬂ-\._»‘lu‘ﬂ.\f-/‘l 2)8 ub/bu)lﬂx.ﬂ;_\uju.b,(unso«n
_1,- gl SO LECL L PLP RS O R DRI R o |
ut.‘ s',(l.rﬂu)h}wnLﬂp)lr’)HJ-hl‘J)J J..”dhﬂ)df 4..£J.9,)KK
\,.-.A.\urJl.l\.hJ‘)(-.,.--u-h..-auujLLyKJ -8y Jd ;_.,a\us_,r..»,),.)\
TR PO B 1 4 J,:.,d-u, oba¥ L-,;,.;Jk_ﬂ»dd ,_,svr_,.,&d,.)l
poraypaad hlinlg K,bg.lr—',(;.\’\ L,Jllu\ sl G ods 0 el led
s.n_,ho\r)l..lb.ﬂ..“dnlﬁuuu’u)‘J.‘c;d'_,a.}”.lr)a. a)(t_g..)L_,\fd))r)L
U‘Jur”_-‘u\f_.“dud)y dlu)u.«la) q.-a,,._.‘J(CE23y WY LY, L)

cialde a3 sl 2an s el

ooty S e il pop Bollod e dlaiil et 1 UK

n)Lc ,...h:hr),zl p.)suh..-')‘)didcm..-..b\f Yh.:a.) «\.H,‘bpnhnd\a).. (Q"./"; L3 °V)

Fig. 1

A. MATVEEV. Sakhr Bilingual OCR (Al-Qari’ Al-Ali). A User's Initial Impressions

53

Lino gyl (oo Sy Al gl S 0S8l QUS) | ol 000 13,38 0031 0S5)
LY g o el (L | pgielr Loany ¥l LSS 959l cpdl Gi5 Loy dagd S Lgud 5 ypgus
iy Lol & Tl § Lo mal 0 LY 030 bd! QLS § salgll JB (J9¥) Aiadl) S5l
a2y Jgol U 13led JISSYI LS adly o J Lol damy 61 5 claliad | croy LI Lsd s 93
Ol pS Jg o 1 D | g B > Sin 19,08 0 U1 oS Y [0 5 o JIS2Y)
i) 1) Laad e 15 1S 5 W 1iST | ga ol l1 3 polas 43S0 13 Lo o8 (ygSiie g 1S3 o) L3
L ¥ i LS of o5 Jgu | o T Ll 1 15 5 > pa S (e Sie 9,88 0 W1 052)
l_.,jw;».s.qdlsrjdy)lolgnmr»)aso;wﬁ;ub%r.plga;zsaﬁu,432,,1.;1;;
s 2ol 03 | p oy dS ol alhy |y L | e Lr Lo g 00 VI QLSII 15l il G55
la o LbJ 1§ b Lo 8 o5 LT Y1 Jg¥ 1 R 1 G e S5ad pY Gl aile g)
clo o) il gl Liiuly (Ledgl) og2 00 0 08 (lsad Inobl b J S5V 1 geio
dae Enne B ogleiy 195 1S o Boog¥ 15 aaey QUST I Ja T oy Sl oo JUSI o gag CBLES]S
= s ogesl | ol | cung g 4S5 Yy Uiy o 0 ale oo Lae i Y g e A o
Loy J B o5 bglsiy 199 S Lo J Lo al | S oY (dl o e aams 52y ¥y 15301 § i
rmL?ui;,.,.J|@;&w¥|3MICmelgjwlylsrplgs&yus||3:3i;,g;u|5}.~
| g of 5 ST 1§ oty gl g2 VI S 1 o 31 Y5 G | 08 g Lo S Jg) |
Lol i) | Al 85 i Aomal) | JLY (0 48 BT L il) im0 Gl |t
3oy e Loy o 5 > G | 0 S 05 o) alis Iy i lid ol 0 | SR 1A | 455
g Gy I Sleadl 130 dolay Lidlly bay 55 dsi 0 1S L 0,83 lad 1 an¥l i) |
by p ame By S)55 0B o | pS | (o pa S S 1985 (Sl A1 0S5 o) g8 G s
Jll_odbg_l&olscjj&sﬂlblq.'ul|5c5|31|(_,.c)l+'>|}ag._»L‘SSJ||533iw3.llé)335
|1 aa lag 1;%!nr@awgr@sosoésu|5,js¢,ﬂsjlbs.gzﬂlﬁmog(%¢cj)|,;

33);g3éw|yu,&gjg_ﬁgb.wﬁwgiﬂléw|o)5.'>|.'.\5.mdl5.ﬂl|d3ﬁﬁa.iﬂ

Fig. 2

54 YNanuscripta (Irientalia. VOL. 1 NO.3 DECEMBER 1995

Spell Checking

1. An on/off button for “Suggestions™ would be useful
(a similar option exists, for example, in Word 6.0).
The function Suggestions is practically unnecessary, as
the user can see the right word in the /mage window,
and it is moreover only of use when working with
simple fonts. With complex fonts, the errors are so un-
predictable that the user would hardly ever accept the
suggestions proposed, although the program uses a great
deal of time to produce them. However, spell check-
ing with Suggestions in Word 6.0, when most recognition
crrors have alrcady been corrected. is generally quite
helpful.

2. The possibility to add new words to the spell
checking custom dictionary would be of much use. A num-
ber of foreign borrowings., proper names, geographical
names, and the like occur frequently. causing the spell
checker to search again and again for the same unlisted
item. With slower machines, the time spent can be up to
ten or fifteen minutes per page.

3. Sometimes it is necessary to undo a correction or to
see a corrected word again (as is possible, for example,
with the “Undo Last™ function in Word 6.0). The connec-
tion to the /mage window in the case of the given correc-
tion will be lost. but the opportunity to go back would nev-
ertheless be useful.

4. There are problems with the placement of the Spell
Checking window. This window sometimes covers the text,
and if one moves it, it will return to the former position
after the next operation. The need to consult the context of
a word to be corrected arises frequently. There are two
possibilities here: (1) automatically moving the window to
the top of the screen when spell checking reaches the
middle of the page. or (2) saving the window position (i. e.
not returning to the former position after the next opera-
tion). (It may be useful to create a button “Save Spell
Checking window position™). The same problem exists,
incidentally. with the Find and Replace windows.

5.1t would be helpful to solve the problem men-
tioned above of the improper position of the cursor in the
Text window, which occurs when the user during spell
checking switches from the Learning window to the Text
window.

My last recommendation concerns the program as a
whole and the very principle of the recognition of Arabic
symbols. Perhaps the technical implications are too great
and would cause a considerable slowing down of the pro-
gram, but it would be helpful if the program could take
into account the position of a letter in a word (or a “block”)
more precisely, considering the previous letter as well as
the subsequent one. What I am suggesting is that not only
the “shape” of a glyph should be taken into consideration,
but its “position” in the word as well. Many errors could be
avoided if position was taken into account.

For example, in a number of fonts in poorly printed
texts, there is practically no difference between the shape
of medial " ‘ayn” and that of final or isolated “ha’”. The
reader can only understand the meaning of such a symbol
according to its position in the word [7]. A similar analysis
should presumably be done by the program. If a symbol
being analyzed is followed by a medial or final variant of a
letter, it means that the symbol cannot be final or isolated
“ha’”, but only medial “‘ayn”, even if the program can
detect no difference in their shape.

However, such an analysis will not only require
that the already recognized previous symbol be taken
into account, but that the not yet recognized subsequent
one be considered as well. The analysis of one symbol
would thus consist of at least three additional steps
(analysis of the letters on either side and of the group to-
gether). Since this would further complicate the program
and would require even more powerful hardware, it is
unclear whether such an innovation is feasible at the
present time.

Notes

1. For example, works printed in the late nineteenth century in relatively complex fonts such as al-Razi's Tafsir printed in Cairo in
1308/1890—1891, on which I tried the program (see fig. I).

2. 1 would like to use this opportunity to express my gratitude to the Research Council of Norway, to the University of Bergen, and
personally to Prof. Joseph N. Bell for giving me a chance to participate in this very interesting project.

3. The Research Institute for Computer and Electronics (RICE) at King Abdulaziz City for Science and Technology started in No-
vember 1994 a project to compile a large database of Arabic texts of different types (classical, modem, scientific, etc.) which will be
available to all researchers doing Natural Language Processing research.

4. A common Latin OCR program can rather easily disassemble a word into vertical segments (characters), as the characters are
scparated by blanks, but for Arabic text this is an extremely sophisticated problem. Absence of blanks between the characters, overlap-
ping of two (or more) characters or the parts thereof in one vertical segment (for example, a “tail” of a “kaf” and a previous letter), a
multitude of diacritical marks, variant forms of the same letter, standard and non-standard ligatures, and so on make it necessary to
compute many parameters at once and require a powerful processor and considerable RAM.

5. Another characteristic example of this kind can be seen in the accompanying “recognized” page from al-Razi's Tafsir, where
‘alayhi as-salam has turned in “aly h as-sa lam” (see fig. 2).

6. If the user scans with 300 dpi resolution, this is not so important, but when he works with 600 dpi resolution it becomes
necessary.

7. And, of course, from the context, but unfortunately we cannot use this criterion in the program.

Illustrations

Fig. 1. Page from al-Razi's Tafsir (Cairo, 1308/1890—1891).
Fig. 2. The same page as “recognized” and spelled by Al-Qari’ al-Ali.

